网赌最正规的平台|诚信TOP!!

    <p id="ooegb"></p>
      <table id="ooegb"><ruby id="ooegb"></ruby></table>
    1. <acronym id="ooegb"><label id="ooegb"></label></acronym>
      <track id="ooegb"><strike id="ooegb"></strike></track>
      广告

      超低功耗传感器方案如何赋能智能楼宇

      2020-09-16 Pavan Mulabagal,物联网(IoT)策略及营销总监,安森美半导体 阅读:
      随着传感器部署数量的增加,对楼宇公用设施应用进行控制的粒度也随之提升,从而可促进高能效的循环。但这在很大程度上取决于传感器、处理器和联接技术的能效。随着数量的增加,不依赖能源使用能量采集技术以实现自供电,未来可能成为必要技术。

      当今,物联网(loT)的基础设施已经非常完善,其适用范围已经不局限于服务器和数据中心,广泛使用在我们的家居、办公和工厂。tPQednc

      处于物联网最外围的是传感器,它会将数据采集起来并中继回云服务或者在本地进行数据处理。传感器是楼宇智能不可缺少的一环,它可以在无人控制的情况下监测控制环境,带来非凡的便利性和经济性,这样当最后一个人离开房间时,智能的楼宇也不会忘记关灯。tPQednc

      传感器的原型是一种相对简单的控制系统,比如通过占用检测和温度测量来控制供暖和照明,如今该技术已发展成熟。对于用户而言,楼宇变得愈加智能,背后其实是其系统智能水平得以提升。tPQednc

      人工智能(AI)的运用最终将无需人工去规划智能楼宇运营时间表。用于检测大面积总体占用情况的简单传感器将会被更精密的图像传感器所取代,这些图像传感器可以识别个体并提供更个性化的控制方式。运动检测器将为能够识别个人面部、手势甚至情绪的成像系统铺平道路。智能音箱或虚拟助手所实现的音频控制也为其迅速普及提供了重要帮助。tPQednc

      随着楼宇变得越来越智能化,它们的功能也将扩展,从而为用户提供更个性化的体验,如访问控制和其他安全功能。这不单纯是在房间空着时关灯实现节能,还包括仅允许授权人员进入房间,自动为个人网络访问肃清不安全因素,确保室内网络安全,甚至帮助查找物品。tPQednc

      智能楼宇将带来智能节能

      照明和供暖占目前整体能源消耗的40%。使用占用检测和根据环境光微弱来调整照明水平的做法在如今的互联网时代已经过时。互联照明的采用更具优势,并完全由现在支持和推进IoT发展的技术所赋能。tPQednc

      通信是其中的一大关键要素。无线网状网络简化了智能照明配件的联接,提升了其可靠性。随着以太网供电(PoE)技术的不断成熟,加之LED技术可极大节省能源,此后无需专门聘请电工前来安装,使用单根低压以太网电缆便可实现照明设备的供电和联接。tPQednc

      如今,这些作为灯具的联接端子越来越多。它们构成了智能楼宇网络不可或缺的一部分。例如,每个灯具都可高效地充当室内导航的信标。为灯具添加其他功能如占用检测、资产跟踪、环境监控也变得更加简单。所有这些功能均可由集成在单个联接设备中的多个传感器实现。tPQednc

      正是诸如此类技术的发展,楼宇将能够为居住者提供更多的便利,但其最终带来最大的益处将是以更智能的方式节能。tPQednc

      打造更智能的楼宇

      智能楼宇系统的拓扑将取决于传感器和执行器,如图1所示。tPQednc

      tPQednc

      图1:智能楼宇系统拓扑示例tPQednc

      位于系统核心的微控制器或数字信号处理器(DSP)将负责协调现有的众多传感器和执行器。除了用于开关灯的机电式或固态继电器外,这将包括用于占用检测、环境监控和访问控制的传感器,而现有的执行器可能包括有刷或无刷直流(DC)电机以开关门窗。使用某种形式的功率调制如脉宽调制(PWM)可以实现可变的照明水平,MCU/DSP就可以很好地执行。联接将是有线和无线的组合,因此,可能使用的协议越来越多。其中,一些协议支持互联网使用的相同协议,因而可以直接访问,其他协议则需要网关。tPQednc

      超低功耗系统现在已经进入视野。可以想象,其中MCU、传感器和执行器都可由从环境中收集的能量来供电,比如光或热,因而为虚拟的自我维持控制系统创造了发展潜力。tPQednc

      在开发智能楼宇基础设施的通信网络时,需要着重考虑范围、功率和延迟这三大因素,而各因素的权重则取决于实际应用。例如,进入黑暗的房间和亮灯之间的任何等待时长的差别对于居住者来说都是非常明显的。在这个场景中,低延迟就很重要。tPQednc

      通常,本地处理将比仅依靠云处理资源做出本地决策提供更低的延迟。若某个传感器可自行确定何时有人进入房间,并增加照明度,那么它可在整体提升用户体验。tPQednc

      tPQednc

      图2:开发智能楼宇通信基础设施时要考虑的主要因素tPQednc

      图2说明了这些因素是如何影响有线/无线技术的选择。实施简单而强固的网状网络(图3),可以构建包括灯具、风扇等联网设备组成的小型网络。网状网络不仅提供范围远超单个节点的扩展网络的方式,还将冗余性构建到网络中,从而允许通过联接节点的任意组合在网络中传递消息。这意味着,如果受到局部干扰,灯具无法作为路标传递消息时,网络则将自动将其重新路由。因此,现在大多数无线协议都采用网状网络。tPQednc

      tPQednc

      图3:网状网络扩展网络并提供路由冗余tPQednc

      多传感器平台交付更多

      随着技术的进步,将多个传感器集成到一个平台中的可行性愈发增长,从而为联接资产创造更大的价值,尤其是在主要价值由其主要功能定义的情况下。以灯具为例,其主要功能是照明,但同时它也是可用于捕捉大量数据的理想传感器节点。tPQednc

      将多个传感器集成至一个设备中,其价值将会实现大幅提升。看似普通的灯具却可成为智能楼宇基础设施的关键部分。传感器的小尺寸和超低功耗特性,使小外形的PCB可轻松容纳多个传感器,以监测占用、温度、湿度、空气质量等。使用超低功耗通信器件如RSL10 蓝牙低功耗无线电,该多传感器平台可由单个纽扣电池供电运行数年(图4)。tPQednc

      tPQednc

      图4:多传感器平台由RSL10系统级封装(RSL10 SIP)赋能的示例tPQednc

      此外,现在甚至可以完全省去电池,并利用从环境中采集的能量为多传感器互联平台供电(图5)。tPQednc

      tPQednc

      图5:能量采集技术现可为智能传感器和执行器提供主要能源tPQednc

      因此,智能传感器几乎可以放置在楼宇中的任何位置。例如,相对小巧且不引人注目的太阳能电池可用于从人工照明中采集足够的能量来为多传感器平台供电,并将数据定期发送回网关。tPQednc

      总结

      高能效将是智能楼宇持续发展的基础。要实现高能效的目标,就要使楼宇更节能以实现更低的能耗,并提供采用先进技术的低功耗方案。tPQednc

      在整个技术堆栈中,从使用传感器到云服务访问,节能将是关键。随着传感器部署数量的增加,对楼宇公用设施应用进行控制的粒度也随之提升,从而可促进高能效的循环。但这在很大程度上取决于传感器、处理器和联接技术的能效。随着数量的增加,不依赖能源使用能量采集技术以实现自供电,未来可能成为必要技术。tPQednc

      安森美半导体正开拓超低功耗传感和联接技术,如高度集成的蓝牙5方案RSL10。辅以智能音频处理和成像系统,安森美半导体始终致力于提供更高能效和更智能的方案。tPQednc

      本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
      • 微信扫一扫
        一键转发
      • 最前沿的电子设计资讯
        请关注“电子技术设计微信公众号”
      • 详解iFixit拆解iPhone?12/Pro,找出续航下降和电池屏幕 苹果iPhone 12系列上市一周左右,iFixi就对12和12 Pro进行了拆解,我们详细了解了Phone 12和iPhone 12 Pro拆解出来的情况,进行了解读分析,找出了续航下降的原因。同时发现iPhone 12 和 iPhone 12 Pro电池和显示屏可以互换,苹果是要走大统一的路径吗?
      • 华强北再度出手,iPhone12的MagSafe已破解 MagSafe配件是iPhone 12发布的亮点之一,而官方的配件价格一般都很贵,苹果中文官网显示,一个MagSafe充电器卖329元,MagSafe手机壳更是要价399元。碰到这种情况,华强北果断出手了,目前显示MagSafe已被破解。
      • 苹果A15芯片将采用什么制程?5nm or 3nm? 苹果iPhone 12已经发布,采用A14芯片,5nm制程,台积电代工,其性能也比上一代提高40%以上,详见:《苹果A14处理器比A12性能提升高达40%,与A13、骁龙865比呢?》。按照惯例,这一代发布以后,苹果早就着手准备下一代A15了,而且A15应该比A14性能要有提升(至于提升幅度多大看手机换代情况),那么,A15将采用什么工艺呢?是否还由台积电代工?
      • 如何突围芯片困局?5G射频前端是何发展趋势? 一键报名下周两场直播,了解电子制造趋势、变局和对半导体行业的影响,以及讲解5G射频前端的模组化设计和市场发展趋势。
      • 4Gbps!HBM2E内存接口再现性能标杆 近年来,随着内存带宽逐渐成为影响人工智能持续增长的关键焦点领域之一,以高带宽内存(HBM、HBM2、HBM2E)和GDDR开始逐渐显露头角,成为搭配新一代AI/ML加速器和专用芯片的新型内存解决方案。
      • 13年,那些我们看着长大的iPhone 富人一般睡醒直接买,小编和穷人才熬夜看发布会,作为从iPhone 4开始就通宵写报道的《电子工程专辑》小编,可以说是看着iPhone慢慢长大的。事实上,iPhone确实在长大,从最初代的3.5英寸到iPhone 12 Pro Max的6.7英寸 ,苹果在13年里发布了29款iPhone。本文将带大家一起回顾iPhone历史上那些重要时刻和事件……
      广告
      热门推荐
      广告
      广告
      EE直播间
      在线研讨会
      广告
      广告
      面包芯语
      广告
      向右滑动:上一篇 向左滑动:下一篇 我知道了 网赌最正规的平台